

活细胞定量 FRET 成像方法鲁棒性评估

尹傲^{1,2},翟士贤^{1,2},孙晗^{1,2},刘智^{1,2},庄正飞^{1,2,3**},陈同生^{1,2,3*} ¹华南师范大学生物光子学研究院教育部激光生命科学重点实验室,广东广州 510631; ²华南师范大学生物光子学研究院广东省激光生命科学重点实验室,广东广州 510631; ³师大瑞利光电科技(清远)有限公司,广东 清远 511517

摘要 基于受体敏化的 3-cube(通道)荧光共振能量转移(FRET)成像方法(通常称为 E-FRET 方法)是活细胞定量 FRET 检测中主流的成像分析技术。基于激发发射光谱线性分离的定量 FRET 检测方法(mExEm-spFRET)因天 然地克服光谱串扰的能力,在活细胞定量 FRET 检测中具备非常好的鲁棒性。利用表达不同模型质粒的乳腺癌 MCF-7 活细胞,在不同信噪比(R_{sN})的条件下分别进行了定量 E-FRET 和 mExEm-spFRET 测量,以 FRET 效率 (E)和质粒供受体浓度比(R_c)参量作为指标,评估二种方法的鲁棒性。对于 $R_{sN}>3$ 的细胞,两种方法得到一致的 E 值,但是 E-FRET 方法得到的个别质粒 R_c 值偏小;对于 $R_{sN}<3$ 的细胞,两种方法都能得到一致的 R_c 值,但是 E-FRET 方法得到的个别质粒 E 值误差率大于 0.1,与文献值偏差稍大。E-FRET 与 mExEm-spFRET 具有几乎 一致的活细胞定量 FRET 检测能力,但是 mExEm-spFRET 的鲁棒性优于 E-FRET 方法。 **关键词** 光谱学;荧光共振能量转移(FRET); 定量 FRET 测量;活细胞;光谱线性分离;鲁棒性

中图分类号 Q631 **文献标志码** A **doi:** 10.3788/CJL202148.2107001

1引言

荧光共振能量转移(FRET)技术被广泛应用于 研究细胞信号转导、分子构象变化和蛋白质分子间 相互作用等细胞生物学事件^[1-5]。基于荧光蛋白 (FPs)的 FRET 测量已经成为监测活细胞内微弱 的、实时的动态生化过程的一种不可或缺的技 术^[6-11]。得到不依赖于实验系统的定量 FRET 指标 (FRET 效率 E 和供受体浓度比 R_c)是开展学术交 流的前提^[12]。FRET 产生的关键条件是供体发射 光谱和受体吸收光谱有较多部分的重叠,因此进行 定量 FRET 测量时光谱串扰很难避免^[13]。

根据供体和受体的光谱差异性,基于光谱的线 性叠加原理的光谱线性分离技术可以分离供、受体 光谱。Clegg等^[14]于 1992年提出利用光谱分离的 原理来测量的观点,其基本思想是通过线性分离得 到供体与受体的发射荧光强度比率,以衡量 FRET 相互作用的程度。早期的光谱分离方法都是半定量 的方法,得到的结果只能定性地说明 FRET 相互作 用的程度,这就导致在不同仪器和不同方法甚至不 同的测量环境下测量的结果不能进行相互交流与比 较[15]。随着光学器件与光学技术的进步,基于光谱 法的 FRET 定量检测技术日渐成熟。Erickson 等[16]于 2001 年首次提出利用三个不同强度值的激 发发射矩阵进行定量 FRET 测量的方法。Corry 小 组^[17]于 2013 年首先提出了利用激发光谱和发射光 谱联合线性分离方法进行定量 FRET 检测的思想, 并首次在 405 nm 和 488 nm 激发波长的激光扫描 共焦显微镜上实现基于激发发射光谱线性分离 (ExEm-spFRET)的定量 FRET 测量。最近陈同生 研究小组^[18]在基于 ExEm-spFRET 的定量 FRET 测量方法上,引入一个系统参数(fsc)来修正文献中 引用的受体-供体量子产额比值, fsc 可以用一个 E 已知的供体-受体串联结构进行预测量,这种方法被 称为 mExEm-spFRET 方法。根据激发发射的光谱 线性分离(mExEm-spFRET)的 FRET 定量检测方

收稿日期: 2021-03-18; 修回日期: 2021-03-28; 录用日期: 2021-04-09

基金项目:国家自然科学基金(61875056)、国家重大科研仪器研制项目(61527825)、广州市科技计划(2019050001)

通信作者: *chentsh@scnu.edu.cn; **zhuangzf@scnu.edu.cn

法具备天然摆脱光谱串扰、高精度、没有损伤和高灵 敏度的特性,研究表明相比 Em-spFRET 方法, mExEm-spFRET 方法具有更好的鲁棒性,即使对 于信噪比较低的细胞也能获得较为准确的测量结 果^[19]。随着光谱成像技术的发展,定量 mExEmspFRET 检测技术在细胞生物学领域会有越来越广 阔的应用前景^[20]。

基于受体敏化发射的 FRET 方法(E-FRET)被 公认为是最适合于活细胞动态监测的 FRET 定量 检测技术,也是近年来各课题小组重点发展的 FRET 定量检测方法^[12,15-16]。Zal 等^[21]在 2004 年 提出的基于受体敏化的 3-cube(通道)FRET 成像方 法(通常称为 E-FRET 方法)成为活细胞定量 FRET 检测中主流的成像分析技术,该方法在共聚焦显微上 和宽场显微镜上都可以实现,但 E-FRET 方法需要对 实验系统的响应和荧光团的光学性质进行严格的校 准和修正^[22-23]。本课题组^[24]最近提出了一种基于一 皿细胞测量 E-FRET 测量系统校正因子的方法(称为 mTA-G 方法),该方法消除了激发光源波动性的影 响,因此基于 mTA-G 方法校正系统过后的 E-FRET 方法在理论上也具有很好的鲁棒性。

本文利用表达不同模型质粒的活细胞,在不同信 噪比的条件下进行了定量 E-FRET 和 mExEmspFRET 成像测量,以此评估两种方法的鲁棒性。实 验结果有力地证明了这两者方法都非常适用于活细 胞的 FRET 定量测量,E-FRET 与 mExEm-spFRET 具有几乎一致的活细胞定量 FRET 检测能力,但是 mExEm-spFRET 的鲁棒性优于 E-FRET 方法。

2 理论与方法

2.1 mExEm-spFRET 方法

对于存在自由供体分子和受体分子的 FRET 样本,可以通过陈同生小组提出的 mExEmspFRET 方法进行定量 FRET 测量^[18]。FRET 样 本的激发发射光谱 $S_{c_{DA}}$ 可以被线性分离为供体激 发发射指纹 $S_{c_{D}}$ 、受体激发发射指纹 $S_{c_{A}}$ 、供体-受体 敏化的激发发射指纹 $S_{c_{c}}$ 、表达式^[18,25]为

 $S_{c_{DA}} = W_{c_{D}} \cdot S_{c_{D}} + W_{c_{A}} \cdot S_{c_{A}} + W_{c_{S}} \cdot S_{c_{S}},$ (1) 式中: $W_{c_{D}}$ 、 $W_{c_{A}}$ 和 $W_{c_{S}}$ 分别对应三个成分的权重; 下标 c_{DA} 、 c_{D} 、 c_{A} 、 c_{S} 分别为参与计算的供受体 FRET 结合对的浓度、供体浓度、受体浓度、供受体 敏化浓度。而激发发射光谱指纹的表达式分别为

$$S_{\rm D} = S_{\rm D}^{\rm EX} \bigotimes S_{\rm D}^{\rm EM}, \qquad (2)$$

$$S_{A} = S_{A}^{EX} \otimes S_{A}^{EM}, \qquad (3)$$

第48卷第21期/2021年11月/中国激光

$$S_{\rm S} = S_{\rm S}^{\rm EX} \otimes S_{\rm S}^{\rm EM}, \qquad (4)$$

式中: S_{D}^{EX} 和 S_{A}^{EX} 分别代表按面积归一化的供体和 受体的激发谱; S_{D}^{EM} 和 S_{A}^{EM} 分别代表按面积归一化 的供体和受体的发射谱; \otimes 代表外积运算。这里引 入系统参数 f_{sc} 用于修正文献中引用的受体-供体 量子产额比值,FRET 效率 E和供受体浓度比 R_{c} 可以表示为

$$E = \frac{W_{\rm s}}{f_{\rm sc} r_{\rm q} W_{\rm D} + W_{\rm s}},\tag{5}$$

$$R_{\rm C} = \frac{W_{\rm A}}{r_{\rm K}(f_{\rm SC}r_{\rm Q}W_{\rm D} + W_{\rm S})},\tag{6}$$

式中:r_Q表示受体与供体的量子产额之比;r_K表示 在所有使用的激发波长下受体与供体的总吸收比。

利用一个 $E \ \pi R_c$ 已知的供体-受体串联结构, 可以预测量 $f_{sc} \ \pi r_k$,表达式为

$$f_{\rm SC} = \frac{W_{\rm S} - W_{\rm S} E^{\rm ref}}{r_{\rm Q} W_{\rm D} E^{\rm ref}},\tag{7}$$

$$r_{\rm K} = \frac{W_{\rm A}}{R_{\rm C}^{\rm ref}(f_{\rm sc}r_{\rm Q}W_{\rm D} + W_{\rm S})},\tag{8}$$

式中: E^{ref} 为参考文献 E 值的参照样本; R_c^{ref} 为参考 文献 R_c 值的参照样本。

事实上有许多测量 E^{ref} 的方法,比如 E-FRET 或者部分受体光漂白(emp-PbFRET)方法^[18-19]。 这里采用基于 mTA-G 方法的 E-FRET 方法来测 量 $E^{\text{ref}[24]}$ 。

2.2 E-FRET 方法

对于受供体浓度比未知的待测 FRET 样本,还可以通过 Zal 和 Chen 等提出的光漂白修正的 E-FRET 方法进行定量 FRET 测量^[21-22]。 $E \ \pi R_c$ 表达式为

$$E = \frac{F_{\rm C}}{F_{\rm C} + GI_{\rm DD}},\tag{9}$$

$$R_{\rm C} = \frac{I_{\rm AA}k}{F_{\rm C}/G + I_{\rm DD}},\tag{10}$$

式中: I_{DD} 为样本在供体激发下供体通道(DD)收集 的荧光强度;G为敏化淬灭因子;k为浓度校正因 子。 F_c 为 FRET 样本中受体敏化荧光信号,表达 式为

$$F_{\rm C} = I_{\rm DA} - a \left(I_{\rm AA} - c I_{\rm DD} \right) - d \left(I_{\rm DD} - b I_{\rm AA} \right),$$
(11)

式中: *I*_{DA} 为样本在供体激发下受体通道(DA)收集的荧光强度; *I*_{AA} 为样本在受体激发下受体通道(AA)收集的荧光强度。串扰系数 *a*,*b*,*c* 和 *d* 可以由单供体和单受体样本得到,表达式为

$$\begin{cases} a = I_{DA(A)} / I_{AA(A)} \\ b = I_{DD(A)} / I_{AA(A)} \\ c = I_{AA(D)} / I_{DD(D)} \\ d = I_{DA(D)} / I_{DD(D)} \end{cases}$$
(12)

式中:*I*_{DA(A)}为单受体样本在供体激发下受体通道中 收集的荧光强度;*I*_{AA(A)}为单受体样本在受体激发下 受体通道中收集的荧光强度;*I*_{DD(A)}为单受体样本在 供体激发下供体通道中收集的荧光强度;*I*_{AA(D)}为单 供体样本在受体激发下受体通道中收集的荧光强 度;*I*_{DD(D)}为单供体样本在供体激发下供体通道中收 集的荧光强度;*I*_{DA(D)}为单供体样本在供体激发下受 体通道中收集的荧光强度;下标(D)和(A)分别表示 单供体样本和单受体样本。

本课题组最近提出了一种基于 Wahl-Schott 组 发展的测量系统校正因子 G 和 k 的方法(称为 mTA-G),得到^[2,24]:

$$\frac{F_{\rm C}}{a \cdot I_{\rm AA(DA)}} = -G \frac{I_{\rm DD(DA)}}{a \cdot I_{\rm AA(DA)}} + \frac{1}{\gamma}, \quad (13)$$

$$k = \frac{I_{\rm DD(DA)} + F_{\rm C}/G}{I_{\rm AV(DA)}},\tag{14}$$

式中: $I_{DD(DA)}$ 为 FRET 样本在供体激发下供体通道 中收集的荧光强度; $I_{AA(DA)}$ 为 FRET 样本在受体激 发下受体通道中收集的荧光强度; γ 为受供体的消 光数之比。由(13)式可得一条直线 $y = m \times x + b$, 其中:

$$x = \frac{I_{\rm DD(DA)}}{a I_{\rm AA(DA)}},$$
 (15)

$$y = \frac{F_{\rm C}}{aI_{\rm AA(DA)}} \,. \tag{16}$$

x和 y 均从实验中得到。直线截距的倒数为受体与供体的消光数之比 γ ,而直线的斜率决定了 E-FRET 方法中的系统校正常数 G。对于每个表达不同 FRET 串联结构质粒的细胞,分别计算它们对应的 y 值和 x 值以绘制校正直线,从而获得校准常数 G、受供体的消光数之比 γ 和浓度校正因子 k。

3 实验材料

3.1 质 粒

质粒青色荧光蛋白(CFP)和黄色荧光蛋白 (YFP)是自由的荧光蛋白;质粒C80Y、C40Y、C10Y 和C4Y,CFP(C)与YFP(Y)分子分别被80,40,10 和4个碱基链接固定的FRET质粒^[25-28]。它们都 购买于美国Addgene质粒库(CFP addgene plasmid 13030;YFP addgene plasmid 13033)。

3.2 试 剂

Dulbecco's Modified Eagle Media(DMEM)培养基购买于 Life Technologies, Inc;新生胎牛血清购买于杭州四季青生物公司,胰蛋白酶购于华美生物工程公司;转染试剂 TurbofectTM in vitrotransfection reagent购自美国的 Fermentas 公司。

3.3 细胞培养和转染

人乳腺癌细胞 MCF-7 来自中国广州暨南大学, 用加入 10%体积分数新生牛血清的 DMEM 培养基 进行培养,放在 CO₂体积分数为 5%、温度为 37 ℃ 的培养箱中生长。实验时先用胰蛋白酶消化细胞,再 转入六孔板中,放入培养箱中培养大概 24 h,当细胞 生长至总面积的 70%~90%时,利用体外转染试剂 TurbofectTM 将准备好的质粒短暂转入细胞中。

质粒转染的具体步骤:1)取6只灭菌的EP管, 每个 EP 管中先加入 400 µL 无血清的 DMEM,再 加入质量为 2 µg 的质粒,轻轻吹打 6 次,静置 5 min; 2) 5 min 后, 向每只 EP 管中加入体积为 6 μL 的转染试剂,轻轻吹打 6 次,静置 20 min; 3) 20 min 后,将 600 µL 无血清的 DMEM 加入到 刚刚混匀的 EP 管中,轻轻吹打 3 次;4)用磷酸盐缓 冲盐溶液(PBS)清洗六孔板中细胞两次,主要洗去 死细胞等脏污,然后把步骤3)中的混合物轻轻滴入 六孔板中,把六孔板重新放回培养箱中培养4~ 6 h;5) 4~6 h后,吸去转染液,然后用 PBS 清洗培 养皿中细胞2次,再往六孔板中加入含有10%胎牛 血清的 DMEM 培养基,再把六孔板重新放回培养 箱中培养 20 h;6) 20 h 后,将六孔板中表达不同质 粒的细胞分别传到培养皿中,将培养皿重新放回培 养箱培养12~20h后即可用于成像实验。

3.4 用于活细胞的自动 FRET 显微成像系统

基于三通道的定量 FRET 成像(E-FRET)和基 于激发发射光谱线性分离的定量 FRET 成像 (mExEm-spFRET)在自行搭建的自动多模态定量 FRET 显微成像系统(Auto-MS)上实现。Auto-MS 主要组成部分包括:倒置宽场荧光显微镜(IX73,奥林 巴斯,日本)、便携式光纤光谱仪(QE65Pro,海洋光 学,美国)、高灵敏度 CMOS 相机(ORCA-Flash 4.0, 滨松,日本)、金属卤化物灯(HGLGPS,奥林巴斯,日 本)、40×/1.3NA 油镜(UPLFLN40XO,奥林巴斯,日 本)、60×/1.42NA 油镜(UPLFLN40XO,奥林巴斯, 日本)、一个电动Cube转轮(IX3-RFACA,奥林巴斯, 日本)、一个电动发射滤光片转轮(FW103,索雷博,美 国)。金属卤化物灯有7个强度调节档位(0%,3%,

6%,12%,25%,50%和100%),衰减片拉板中的配置 为1%,3%和空档。显微成像与测量方法使用的滤 光片购自美国 Chroma 公司,分为带通(BP)激发片 (Ex)、二色片(DM)、BP、长通(LP)发射片(Em)。激 发片和二色片装置于电动 Cube 转轮中。Cube 1:Ex1 435 nm/20 nm(Ex436)(435 nm 是指滤光片 Ex1 的通 带中心波长,20 nm 是指滤光片 Ex1 的通带带宽,下 同)和 DM 455 nm。Cube 2:Ex2 470 nm/20 nm 和 DM 490 nm。Cube 3:Ex3 510 nm/20 nm 和 DM 515 nm。Cube4:Ex4 435 nm/20 nm,DM 455 nm 和 LP 460 nm。Cube 5:Ex5 470 nm/20 nm, DM 490 nm和 LP 495 nm。发射片装置在电动 Cube 转 轮中,470 nm/20 nm(Em 1),490 nm/20 nm(Em 2), 510 nm/20 nm(Em 3),530 nm/20 nm(Em 4)和 550 nm/20 nm(Em 5)。

其中 Cube 1, Cube 2, Em 1, Em 2, Em 3, Em

第48卷第21期/2021年11月/中国激光

4,Em 5 用于实现 mExEm-spFRET 定量 FRET 成 像^[29];Cube 1,Cube 3,Em 1 和 Em 4 用于实现 E-FRET 显微成像^[30];Cube 4 和 Cube 5 用于实现单 细胞 mExEm-spFRET 定量测量。CMOS 相机以 1×1 的模式运行,获取的图片大小为 2048 pixel× 2048 pixel。每张图像的曝光时间均设置为 500 ms, 一次完整的 mExEm-spFRET 定量 FRET 成像花费 约 5 s,一次完整的 E-FRET 成像花费约 3 s.

4 实验结果与讨论

4.1 测量光谱指纹(S_D, S_A, S_S)与光谱串扰系数 (a, b, c, d)

利用分别表达了荧光蛋白 CFP(供体)和 YFP (受体)的活 MCF-7 细胞来测量 CFP,YFP,CFP-YFP 敏化的激发发射光谱指纹。在荧光图像中选 取感兴趣的细胞区域(ROI) [图1(a)中标有"Cell"

- 图 1 CFP,YFP和 CFP-YFP 敏化的激发发射光谱指纹。(a)左图为在 436 nm,470 nm 波长激光激发下,CFP和 YFP 在不同的滤 光片下成像得到的荧光图像,右图为 CFP和 YFP 的归一化发射光谱;(b)上图为表达了 CFP 的细胞在 436 nm 和 470 nm 波 长激光激发下在 510 nm 发射通道捕捉的荧光图像和表达了 YFP 的细胞在 436 nm 和 470 nm 波长激光激发下在 530 nm 发 射通道捕捉的荧光图像,下图为 CFP和 YFP 归一化的激发谱;(c)S_D、S_A、S_S的光谱指纹图谱,比例尺为 10 μm
- Fig. 1 Excitation-emission spectral fingerprints of CFP, YFP, and CFP-YFP sensitization. (a) Left images are fluorescence images of CFP at 436-nm laser extation and YFP at 470-nm laser extation under different emission filters, right image is normalized emission spectrum of CFP and YFP; (b) top images are fluorescence images of CFP captured by 510-nm emission channels under laser excitation at 436 nm and 470 nm wavelengths and YFP captured by 530-nm emission channels under laser excitation at 436 nm and 470 nm wavelengths, bottom image is normalized excitation spectrum of CFP and YFP; (c) spectral fingerprints of S_D , S_A , and S_S , scale bar is 10 μ m

字样的 ROI 和背景区域 [没有细胞的位置,如 图 1(a)中标有"BG"字样的 ROI 。 先从 43 个未转 染 FPs 的细胞里测得 4 个激发下的平均背景荧光 光谱,随后从转染了 FPs 的细胞中测得的发射光谱 中扣除平均背景荧光光谱。如图 1(a) 左图所示,采 用波长为 436 nm 的激发光激发 CFP,470 nm 的激 发光激发 YFP,经过不同的发射滤光片成像后得到 荧光图像。使用发射响应进行系统响应校正后,按 照面积对测量得到的荧光强度进行归一化,得到了 如图 1(a) 右图所示的 CFP 和 YFP 在不同激发波长 下的归一化发射强度谱(CFP 和 YFP 发射光谱)。 图 1(b)上图显示了 CFP 和 YFP 分别在 436 nm 和 470 nm 激发光激发下收集的荧光图像。CFP 和 YFP的激发光谱如图 1(b)下图所示。利用 CFP 的 激发光谱与发射光谱的外积得到光谱指纹 S_D,利用 YFP 得到光谱指纹 S_A ,利用 CFP 的激发光谱与 YFP 的外积得到光谱指纹 Ss。为了保证结果的准 确性,重复测量了 45 个分别表达了 CFP 和 YFP 的 活细胞,取平均值最终得到 S_D,S_A,S_s的光谱指纹 伪彩色图,如图1(c)所示。

激发发射指纹光谱的精确测量对 mExEmspFRET 是非常重要的。研究表明,MCF-7 细胞的 自发荧光明显低于 DMEM^[31],选择无细胞的区域 作为背景,从表达荧光蛋白的细胞的荧光信号中去 除背景。为了减小背景对荧光蛋白信号的影响,选 择了荧光蛋白表达含量高的细胞来测量 CFP 和 YFP 的激发谱和发射谱。研究表明,不同细胞的激发谱和 发射谱是一致的,符合理论上荧光的光谱特征,即荧 光的激发发射光谱特征只与系统和使用的荧光团的 光学特性有关^[29-30]。事实上,一旦系统被校准,测量 的激发发射指纹光谱在至少6个月内都是比较一致 的,表明系统具有良好的稳定性^[25,29-30]。因此,一旦 确定了三个激发发射指纹光谱,就不需要为后期的 FRET 测量准备单转供体样本和单转受体样本。

与此同时,利用同样的单转供体(CFP)和受体 (YFP)样本分别测量在三个通道(DD, DA 和 AA) 的光谱串扰系数 a,b,c 和 d。如图 2(a) 所示, DD 通道的荧光图像显示了选取的两个表达 CFP 细胞 的 ROIs 以及对应的背景区域。将各个通道的 CFP 细胞中的第一个区域(ROI1)的平均强度减去对应 通道的背景区域的平均强度,然后除以测量通道图 像时相机的曝光时间(500 ms),得到 CFP 细胞 ROI1 在各个通道所对应的相对荧光强度值: $I_{\text{DD(D)}}(\text{CFP}, \text{ROI1}) = 4.7119, I_{\text{DA(D)}}(\text{CFP}, \text{ROI1}) =$ 3.8979 和 I_{AA(D)}(CFP, ROI1)=0.0376。将所求的 各通道的相对荧光强度值代入(12)式中,得到 c =0.0079, d=0.8273。选取 30 个表达 CFP 细胞的 ROIs,最终得到 c 和 d 的统计平均值, $c = 0.008 \pm$ 0.01,d=0.820±0.02。图 2(b)为从通道图像中选 取的两个表达 YFP 细胞的 ROIs 以及对应的背景 区域。采用同样的方法计算得到 YFP 细胞 ROI1 在各个通道所对应的相对荧光强度值: I_DD(A) (YFP, $ROI1) = 0.0143, I_{DA(A)}$ (YFP, ROI1) = 3.6396 和 *I*_{AA(A)}(YFP,ROI1)=23.4824。将它们代入(12)式 中,得到 a=0.1550,b=0.0006。测量了至少 30 个 表达 YFP 细胞的 ROIs,得到 a 和 b 的统计结果,a =0.158±0.01,b=0.00016±0.00001。光谱串扰系数 a,b,c和 d 的统计结果首方图如图 2(c)所示。

图 2 测量光谱串扰系数。(a) CFP 的 *I*_{DD(DA}, *I*_{DA(DA}) 和 *I*_{AA(DA}) 的典型荧光图像;(b) YFP 的 *I*_{DD(DA}, *I*_{DA(DA}) 和 *I*_{AA(DA}) 的 典型荧光图像;(c) 至少 30 个表达 CFP 和 YFP 的细胞计算得到光谱串扰系数的统计直方图

Fig. 2 Spectral crosstalk coefficient measurement. (a) I_{DD(DA)}, I_{DA(DA)}, and I_{AA(DA)} typical fluorescence images of CFP;
(b) I_{DD(DA)}, I_{DA(DA)}, and I_{AA(DA)} typical fluorescence images of YFP;
(c) statistical histogram of spectral crosstalk coefficient of at least 30 cells expressing CFP and YFP

光谱串扰系数的精确测量有助于提高活细胞定量 E-FRET 检测的准确率和成功率。实验结果表明,在相当长的一段时间内(至少3个月),自动FRET 显微成像系统都具有良好的稳定性^[30]。因此在后续的 E-FRET 成像实验中,光谱串扰系数不用重新进行测量。

4.2 预测量系统校正因子

首先利用 mTA-G 方法测量系统校正因子:*G* 因子, γ 因子和 *k* 因子。mTA-G 方法的处理步骤: 1) 预先确定所有 FRET 质粒的 $F_c/I_{DD(DA)}$ 范围; 2) 分别将表达不同 FRET 质粒的细胞培养在一个 细胞皿中;3) 通过计算表达不同 FRET 质粒细胞的 $F_c/I_{DD(DA)}$ 值,对表达不同 FRET 质粒的细胞进行 区分和标记;4) 对表达不同质粒的细胞的 $F_c/I_{DD(DA)}$ 值与 $I_{DD(DA)}/I_{AA(DA)}$ 值进行线性拟合,得到 *G* 因子, γ 因子和 *k* 因子。

为了预先确定所有 FRET 质粒的 $F_{\rm C}/I_{\rm DD(DA)}$ 范 围,测量了表达 C4Y 质粒的活细胞在三个通道的荧 光强度图像($I_{DD(DA)}$, $I_{DA(DA)}$ 和 $I_{AA(DA)}$),如图 3(a)左 所示。测量得到 C4Y 细胞的 ROI1 在各个通道所 对应的相对荧光强度值: $I_{DD(DA)}$ (C4Y, ROI1) = 11.854, $I_{AA(DA)}$ (C4Y, ROI1) = 36. 165, $I_{DA(DA)}$ (C4Y, ROI1)=39.850。将以上测量值和光谱串扰 系数代入(11)式中,得到 $F_{\rm C}/I_{\rm DD(DA)}$ (C4Y,ROI1)= 2.064。图 3(a) 右为 97 个 C4Y 细胞 ROIs 的 F_c/ IDD(DA) 直方统计图。选择直方图中峰值区域附近定 义为 C4Y 的 $F_{\rm C}/I_{\rm DD(DA)}$ 阈值范围,为 2.05~2.35。 随后测量了表达 C40Y 质粒的细胞的荧光图像,如 图 3(b) 左所示。图 3(b) 右为 92 个 C40Y 细胞 ROIs 的 $F_{\rm C}/I_{\rm DD(DA)}$ 直方统计图,定义 C40Y 的 $F_{\rm C}/$ IDD(DA) 阈值范围为 0.95~1.25。图 3(c) 左为 C80Y 细胞的荧光图像。从图 3(c)右 79 个 C80Y 细胞 ROIs 的 $F_{\rm C}/I_{\rm DD(DA)}$ 直方统计图中判定 C80Y 的 F_C/I_{DD(DA)}阈值范围为 0.55~0.85。

将分别转染有 C4Y、C40Y 和 C80Y 质粒的细胞放在同一培养皿中培养,它们对应的三个通道的 荧光图像如图 3(d) 左所示。由于预判了三种 FRET 质粒的 $F_c/I_{DD(DA)}$ 阈值范围,在同一培养皿 中培养这三种质粒的细胞便很容易地根据 $F_c/I_{DD(DA)}$ 值区分^[24]。在图 3(d)左中选取了 8 个细胞 的 ROIs 和对应的背景区域。 $I_{DD(DA)}$ 图像中,1~8 个细胞 ROIs 对应的 $F_c/I_{DD(DA)}$ 值分别为 2. 221 (Cell, ROI1)、2. 137 (Cell, ROI2)、2. 075 (Cell, ROI3)、0. 967 (Cell, ROI4)、1. 048 (Cell, ROI5)、 1.004(Cell, ROI6)、0.750(Cell, ROI7)和 0.727 (Cell, ROI8)。将计算得到的 8 个细胞 ROIs 的 $F_{\rm C}/I_{\rm DD(DA)}$ 值与预判 C4Y、C40Y、C80Y 质粒的 $F_{\rm C}/$ IDD(DA) 值范围对应,便可对图 3(d) 左图中的细胞进 行标记: 数字 $1 \sim 3$ 的细胞区域为 C4Y 细胞的 ROIs,数字 $4 \sim 6$ 的细胞区域为 C40Y 细胞的 ROIs,数字7~8的细胞区域为C80Y细胞的 ROIs。图 3(d) 右为表达有 240 个三种质粒的细胞 的 $F_{\rm C}/I_{\rm DD(DA)}$ 直方统计图。根据预判的三种质粒的 $F_{\rm C}/I_{\rm DD(DA)}$ 值范围,将这 240 个细胞分别标识为 C4Y、C40Y、C80Y 细胞。以 $F_{\rm C}/(a \cdot I_{\rm AA(DA)})$ 值为 y 坐标,以 $I_{DD(DA)}/(a \cdot I_{AA(DA)})$ 值为 x 坐标。根据 (15)、(16)式,绘制 *x*-*y* 直线以获得 G 因子和 γ 因 子,如图 3(e) 左图所示。该直线的截距的倒数为 $\gamma = 1/18.80$, 而直线的斜率决定了 G = 4.845。通 过一个受供体比为1:1的参照 FRET 样本(C4Y)确 ε_k 因子,通过将测量得到的 G 值和 C4Y 的测量 值代入到(14)式中,得到 k=0.579。

为了验证 mTA-G 方法测量 G 值, γ 值和 k 值 时的准确性, 通过 E-FRET 方法分别测量了转染有 C4Y,C10Y,C40Y 和 C80Y 质粒的活细胞的 E 值。 首先测量了每一种质粒在三个通道的荧光强度, 并 通过(11)式计算出每个 ROI 对应的 F_c 值。结合这 些测量到的 FRET 参数,包括 F_c , G 因子, 通过(9) 式获得相应逐个像素处理的 E 值。图 3(e)右图统 计了 mTA-G 方法测量的 G 和 γ 所得到的 E 值。这 里统计了 75 个 C4Y 细胞的 E 值为 0.30±0.03,46 个 C10Y 细胞的 E 值为 0.23±0.04,56 个 C40Y 细胞 的 E 值为 0.16±0.02,78 个 C80Y 细胞的 E 值为 0.12±0.01。实验结果与文献报道的结果^[28]相一致。

测量可靠的 G 因子是活细胞定量 E-FRET 检 测的关键。实验过程中采用 60×/1.42NA 的物镜 进行成像,以视野中心区域的细胞为基准进行调焦。 应尽量选择接近中心区域的细胞进行计算,以避免 不同细胞不在同一个焦面导致的 FRET 信号不准 确。研究结果不仅证实了 mTA-G 方法对自动 FRET 显微成像系统实施校正的正确性,也证实了 在活细胞中定量 E-FRET 测量的准确性。此外相 关研究表明,mTA-G 方法在测量过程中不需要切 换细胞培养皿,因而能够快速地测量系统校正因子, 并且该方法回避了光学测量中不同质粒对应不同培 养皿造成的切换问题,消除了激发光干扰的影 响^[24]。这些优势使得 E-FRET 的成像能够很容易 地在活细胞中实现快速定量 FRET 检测。

- 图 3 预测三种不同类型细胞的 $F_c/I_{DD(DA)}$ 值范围并通过其测量 G 和 γ 因子。(a) C4Y 的典型荧光图像和 $F_c/I_{DD(DA)}$ 直方 图;(b) C40Y 的典型荧光图像和 $F_c/I_{DD(DA)}$ 直方图;(c) C80Y 的典型荧光图像和 $F_c/I_{DD(DA)}$ 直方图;(d) 同一个培养皿 中表达了 C4Y、C40Y 和 C80Y 的细胞的典型荧光图像和对应的 $F_c/I_{DD(DA)}$ 直方图;(e) 同一个培养皿中表达有 C4Y、C40Y 和 C80Y 的细胞中获得的校准线和应用 E-FRET 方法测定细胞的 E 值
- Fig. 3 Predetermining the $F_{\rm C}/I_{\rm DD(DA)}$ ranges of three kinds of cells and measuring G and γ factors. (a) Fluorescence images of C4Y cells and corresponding histogram of $F_{\rm C}/I_{\rm DD(DA)}$ ranges; (b) fluorescence images of C40Y cells and corresponding histogram of $F_{\rm C}/I_{\rm DD(DA)}$ ranges; (c) fluorescence images of C80Y cells and corresponding histogram of $F_{\rm C}/I_{\rm DD(DA)}$ ranges; (c) fluorescence images of C80Y cells and corresponding histogram of $F_{\rm C}/I_{\rm DD(DA)}$ ranges; (c) fluorescence images of C80Y, cells and corresponding histogram of $F_{\rm C}/I_{\rm DD(DA)}$ ranges; (c) cells expressing C4Y, C40Y, and C80Y and corresponding histogram of $F_{\rm C}/I_{\rm DD(DA)}$ ranges; (e) calibration line obtained from cells expressing C4Y, C40Y, and C80Y cultured in one dish and implementation of E-FRET method for measuring the *E* values of cells

4.3 预测量系统参量

接下来使用受供体浓度比为 1:1的 C4Y 质粒 作为参考样本 E^{ref} 来测量系统参量 f_{sc} 和 r_K。 图 4(a)显示了表达 C4Y 的活 MCF-7 细胞的激发 发射光谱图像。经发射光谱响应修正后的参考样本 的 S_{DA} 按照 S_{D} 、 S_{A} 和 S_{S} 三部分指纹光谱线性分离 得到三部分指纹光谱所占的权重(W_{D} , W_{A} 和 W_{S})。 将三部分指纹光谱所占权重及文献值 $r_{\text{Q}} =$ 0.299^[25,29-30]代入(7)、(8)式,可分别得到 f_{sc} 和 r_{K} 。图4(b)为图4(a)对应的逐像素的 f_{sc} 的伪彩

Fig. 4 Measuring system parameters using C4Y cells. (a) Representative excitation-emission spectral fluorescence images of C4Y cells; (b) corresponding pixel-to-pixel pseudo-color map and column statistical map of f_{sc} ; (c) corresponding pixel-to-pixel pseudo-color map and column statistical map of r_{K} ; (d) statistical f_{sc} and r_{K} values of 100 living cells

图和柱形统计图。图 4(c)为与图 4(a)对应的逐像 素计算得到的 $r_{\rm K}$ 的伪彩图和柱形统计图。如 图 4(d)所示,统计了 100 个活细胞所得的 $f_{\rm sc}$ 值 和 $r_{\rm K}$ 值,结果分别为 $f_{\rm sc} = 1.14 \pm 0.03$ 和 $r_{\rm K} = 0.223 \pm 0.02$ 。

 f_{sc} 和 r_{κ} 的预先测量对于 mExEm-spFRET 方法是必须的, f_{sc} 与细胞内受供体的量子产额相 关。早期的研究都是直接引用文献中供体和受体的 量子产额值(Q_D 和 Q_A),以用于定量 FRET 测 量^[17,32-33]。然而,实际的 Q_D 和 Q_A 值不仅与荧光蛋 白(FPs)的光学性质有关,还与测量仪器的发射光 路响应有关,而且用文献的 Q_D 和 Q_A 值来代替实验 测量中某个发射波段内的 Q_D 和 Q_A 值也是不合适 的。对于自动 FRET 显微成像系统,引入 f_{sc} 来修 正文献中的 Q_D 和 Q_A 的比值(r_Q)。事实上, f_{sc} 与 r_Q 的乘积即为实测的 r_Q 值。对于给定的细胞系, r_K 通常只与系统的激发光路特性以及供体和受体 的吸收光谱有关^[18,25]。系统以及供体和受体的光 谱特性是非常稳定的,因此对于一套给定的实验系 统,预测量的 f_{sc} 和 r_Q 值可以直接被用于后续的定 量 FRET 测量。研究表明,在 6 个月内重复测量了 三次 f_{sc} 和 r_Q 值,得到了一致的结果,这也进一步 证明了系统的稳定性^[25]。

在荧光图像的逐像素强度分布直方图中,例如 图 4(b)和图 4(c),发现背景荧光强度信号和转染了 荧光蛋白的细胞的荧光强度信号都可以被看成近似 的高斯分布,这是由于视场中不同位置的激发光强 不同(视场中心区域能量最高,往边缘呈幂指数下 降)。处于低荧光强度的高斯峰被认为来自背景荧 光,处于高荧光强度的高斯峰被认为来自荧光蛋白 的荧光信号。针对荧光信号较弱的像素点,选取的 背景区域与细胞位置相距太远,导致背景信号并不 准确,FRET 信号可能会出现负值。此时的结果是 不可信的,应当去除。因此,应选取尽量接近细胞的 区域作为背景。

4.4 比较 mExEm-spFRET 方法与 E-FRET 方法的 鲁棒性

为了评估 mExEm-spFRET 方法与 E-FRET 方法的鲁棒性,分别转染了模型质粒 C4Y,C10Y, C40Y 以及 C80Y,并对不同信噪比(R_{sn})条件下的 同一个细胞分别实施定量 mExEm-spFRET 方法与 E-FRET 方法测量。这里的 R_{SN} 定义为 ROI 内的 平均荧光强度除以背景区域内的平均荧光强度。 图 5(a)为表达了不同模型质粒的细胞荧光图像, 其中标有数字的 ROIs 分别表示高 R_{sN} 的细胞 1 和低 R_{SN} 的细胞 2。图 5(b)分别给出了图 5(a)对 应的细胞逐像素的 E 和 R_c 伪彩图。由两种方法 测得的图 5(a)中细胞对应的 E 和 R_c 值列在表 1 中。对于细胞1和细胞2,由两种方法得到的E和 $R_{\rm c}$ 值与文献值和期望值一致^[28],误差率 $E^{\rm error} \leq$ 0.1,R^{error} ≪0.1,其中定义误差率=(测量值-文 献值)/文献值。但由 E-FRET 方法计算不同类型 细胞的 E 值普遍比 mExEm-spFRET 方法计算的 *E* 值大。

图 5(c)和图 5(d)分别展示了从不同信噪比细胞中测得 *E* 和 *R*_c 值的统计结果,原始数据如表 2 所示。在表 2 *R*_{SN} 一列中,括号里的数字代表

图 5(c)和图 5(d)直方图中各类细胞的数量。对于 $R_{sN}>3$ 的细胞,两种方法都能得到一致的 $E(E^{error} \leq 0.1)$,但是 E-FRET 方法得到的 C40Y 的 R_c 值偏 $\Lambda[R_c(C40Y) = 0.897, R_c^{error}(C40Y) = 0.103]$,而 且 C80Y 和 C40Y 的 R_c 值是不稳定的[方差 D_s (C40Y) = 0.126, $D_s(C80Y) = 0.151; D_s > 0.1]$ 。 对于 $R_{sN}<3$ 的细胞,两种方法都能得到一致的 R_c 值($R_c^{error} \leq 0.1$),但是 E-FRET 方法得到的 C80Y 的 E 值与文献值存在偏差^[28] [$E^{error}(C80Y) = 0.16$]。这些结果进一步证明了 mExEm-spFRET 方法的鲁棒性优于 E-FRET 方法。

分别于 2020 年 12 月 12 日和 2021 年 3 月 10 日在本课题组的系统上实施了 mExEm-spFRET 方法和 E-FRET 方法。测量了表达 C4Y, C10Y, C40Y 以及 C80Y 的活 MCF-7 细胞的 E 和 R_c 值, 测量结果如表 3 所示。其中在 12 月 12 日与 3 月 10 日用 mExEm-spFRET 方法测量的 C4Y,C10Y, C40Y以及C80Y的 R_c 值都非常接近1,而在3月 10 日用 E-FRET 方法计算得到 C80Y 的 R_c 值明显 偏大且不稳定, $R_{c}(C80Y) = 1.27$, $R_{c}^{error}(C80Y) =$ 0.27; D_s(C80Y)=0.53。两种方法在12月12日 与 3 月 10 日 测 量 的 C4Y, C10Y, C40Y 的 E 值 与文献值相一致且较稳定 $[E^{\text{error}} \leq 0.1, D_{s} \leq 0.1]$, 但是 E-FRET 方法在 3 月 10 日测量到的 C80Y 的 E值偏大且不稳定 [E (C80Y) = 0.14, $E^{\text{error}}(C80Y) = 0.21; D_s(C80Y) = 0.12$]。这些结 果不仅进一步证实了系统校正的正确性,同时也 证实了相较 E-FRET 方法, mExEm-spFRET 方法 的鲁棒性更好, 尤其对于 E 值低 (E < 0.14)的 FRET 质粒。

实验研究表明,激发光强度与 CMOS 相机的曝 光时间的改变不会对荧光蛋白的激发谱和发射光谱 造成影响,因而用 mExEm-spFRET 方法所测得的 结果不容易受到激发光波动等外界条件不稳定所带 来的影响^[29-30]。用 mExEm-spFRET 方法获取 FRET 样本的激发发射光谱需要 8 张荧光图像,比 E-FRET 方法获取 3 张图像的时间仅多了 2 s;但是 在信噪比和 FRET 模型质粒 E 值均较低($R_{sN} < 3$, E < 0.14)时,相比于 E-FRET 方法,mExEmspFRET 方法却表现出更优越的稳定性和准确性。 由于受体 YFP 表达后的荧光性质不稳定而容易受 到环境的影响^[2],这可能导致 E-FRET 方法测得的 C40Y 和 C80Y 的 R_c 值存在偏差。

- 图 5 表达了 C4Y,C10Y,C40Y 和 C80Y 的细胞在不同信噪比的条件下实施定量 FRET 方法测量。(a)表达 C4Y,C10Y, C40Y 和 C80Y 的细胞的典型荧光图像;(b)对应的逐像素的 E 的伪彩图和对应的逐像素的 R_c 的伪彩图;(c) $R_{SN} \leqslant 3$ 时测得的 E 和 R_c 的统计结果图;(d) $R_{SN} > 3$ 时测得的 E 和 R_c 的统计结果图
- Fig. 5 Quantitative FRET measurements for cells expressing C4Y, C10Y, C40Y, and C80Y under different R_{SN} . (a) Fluorescence images of cells expressing C4Y, C10Y, C40Y, and C80Y; (b) corresponding pixel-to-pixel Epcolor images and R_c pcolor images; (c) statistical E and R_c values of cells under $R_{SN} \leq 3$; (d) statistical E and R_c values of cells under $R_{SN} > 3$

	Table 1 D and Rev values of cents in Fig. o inclusioned by individual optical faith of the financial								
Plasmid	Cell	p	E		R _c		Reported E		
		d Cell	$\Lambda_{\rm SN}$	mExEm-spFRET	E-FRET	mExEm-spFRET	E-FRET	value $(E^{ref})^{[28]}$	
C4Y	1	6.86	0.298	0.308	1.063	0.989	0.200+0.004		
	2	2.34	0.290	0.316	1.127	0.867	0.29910.004		
C10Y	1	18.82	0.225	0.234	0.821	0.963			
	2	3.44	0.234	0.248	0.940	0.936	0.228 ± 0.003		
C40Y	1	27.69	0.159	0.160	0.966	1.094			
	2	6.58	0.149	0.149	1.012	1.079	0.158 ± 0.002		
C80Y	1	10.809	0.126	0.128	1.017	1.144			
	2	6.910	0.118	0.125	1.042	1.083	0.110±0.002		

Table 1 E and R_{\circ} values of cells in Fig. 5 measured by mExEm-spFRET and E-FRET methods

表1 mExEm-spFRET 和 E-FRET 方法测得图 5 中细胞的 E 和 R_c值

表 2 mExEm-spFRET 和 E-FRET 方法测得表达四种不同 FRET 结构质粒细胞的 E 和 R_c 值的统计结果

Table 2 Statistical E and R_c values of the cells expressing four different FRET plasmid measured by mExEm-spFRET

and E-FRET methods

Dlaamid	D	E		R _c		
Flashild	$K_{\rm SN}$	mExEm-spFRET	E-FRET	mExEm-spFRET	E-FRET	
CAN	≪3(39)	0.292 ± 0.019	0.313±0.022	1.034 ± 0.071	1.005 ± 0.080	
C4 I	>3(22)	0.294 ± 0.020	0.302 ± 0.017	1.012 ± 0.077	1.027 ± 0.077	
C10N	≪3(25)	0.226 ± 0.021	0.224 ± 0.028	1.023 ± 0.037	0.993 ± 0.059	
C10 I	>3(19)	0.237 ± 0.015	0.240 ± 0.018	1.025 ± 0.097	1.016 ± 0.096	
CAON	≪3(23)	0.155 ± 0.010	0.163 ± 0.012	1.086 ± 0.039	1.001 ± 0.029	
C40 I	>3(28)	0.157 ± 0.011	0.159 ± 0.017	1.085 ± 0.089	0.897 \pm 0.126	
COON	≪3(32)	0.126 ± 0.018	0.135 ± 0.023	0.989 ± 0.045	0.994 ± 0.034	
C80 I	>3(35)	0.123 ± 0.016	0.127 ± 0.010	1.046 ± 0.126	1.083 ± 0.151	

表 3 mExEm-spFRET 和 E-FRET 方法在 12 月 12 日和 3 月 10 日测得表达四种不同 FRET 结构质粒细胞的 E 和 R_c 值的 统计结果

Table 3 Statistical E and R_c values of cells expressing four different FRET plasmid measured by mExEm-spFRET and E-FRET methods on December 12, March 10

	E							
Date	mExEm-spFRET				E-FRET			
-	C4 Y	C10Y	C40Y	C80Y	C4 Y	C10Y	C40Y	C80Y
December 12	0.29 ± 0.02	0.23 ± 0.01	0.16 ± 0.02	0.12 ± 0.01	0.30 ± 0.03	0.23 ± 0.04	0.16 ± 0.02	0.12 ± 0.02
March 10	0.32 ± 0.02	0.24 ± 0.03	0.15 ± 0.02	0.10 ± 0.06	0.33 ± 0.02	0.24 ± 0.05	0.18 ± 0.02	0.14 ± 0.12
	R _c							
Date	mExEm-spFRET				E-FRET			
-	C4 Y	C10Y	C40Y	C80Y	C4 Y	C10Y	C40Y	C80Y
December 12	1.02 ± 0.07	1.02 ± 0.07	1.09 ± 0.06	1.02 ± 0.09	1.05 ± 0.05	1.04 ± 0.09	0.99 ± 0.08	1.07 ± 0.14
March 10	0.98 ± 0.08	1.04 ± 0.10	1.08 ± 0.09	1.04 ± 0.16	1.11±0.10	1.13 ± 0.13	1.17 ± 0.12	1.27 ± 0.53

5 结 论

利用表达不同模型质粒的活 MCF-7 细胞在不同信噪比的条件下分别进行定量 E-FRET 和 mExEm-spFRET 成像测量,以此评估二种方法的

鲁棒性。实验结果表明,E-FRET 与 mExEmspFRET 方法都非常适用于在活细胞中进行定量 FRET 测量。对于不同信噪比的细胞,mExEmspFRET 方法得到的 $E \ \pi R_c$ 误差率始终小于 0.1。 当 $R_{sN} < 3$ 时,表达低E 值(E < 0.14)质粒的细胞

用 E-FRET 方法得到的 E 值误差率为 0.16,与文 献值偏差稍大,表明 mExEm-spFRET 鲁棒性优于 E-FRET 方法,尤其对于 E 值低且 R_{SN} 低的细胞。

参考文献

- [1] Tramier M, Gautier I, Piolot T, et al. Picosecondhetero-FRET microscopy to probe protein-protein interactions in live cells [J]. Biophysical Journal, 2002, 83(6): 3570-3577.
- [2] Butz E S, Ben-Johny M, Shen M, et al. Quantifying macromolecular interactions in living cells using FRET two-hybrid assays [J]. Nature Protocols, 2016, 11(12): 2470-2498.
- [3] Miyawaki A, Llopis J, Heim R, et al. Fluorescent indicators for Ca²⁺ based on green fluorescent proteins and calmodulin [J]. Nature, 1997, 388 (6645): 882-887.
- [4] Zhang J W, Yang F F, Chai L Y, et al. Spectral measurement of acceptor-to-donor extinction coefficient ratio in living cells[J]. Micron, 2015, 68: 98-106.
- [5] Shan G C, Huang W. Theoretical study of single-pair fluorescence resonant energy transfer spectroscopy in microcavity[J]. Acta Optica Sinica, 2009, 29(4): 1049-1053.
 单光存,黄维. 微腔中单分子对荧光共振能量转移光 谱学的理论研究[J]. 光学学报, 2009, 29(4): 1049-1053.
- [6] Qiu C Y, Jia Z N, Zhang T T, et al. Cascade FRET optofluidic laser generation in Fabry-Perot microcavity[J]. Laser & Optoelectronics Progress, 2019, 56(18): 181403.
 邱诚玉,贾卓楠,张婷婷,等.法布里-珀罗微腔中级 联 FRET 光微流激光产生研究[J].激光与光电子学 进展, 2019, 56(18): 181403.
- [7] He Y S, Pan C G, Cao H X, et al. Highly sensitive and selective dual-emission ratiometric fluorescence detection of dopamine based on carbon dots-gold nanoclusters hybrid [J]. Sensors and Actuators B: Chemical, 2018, 265: 371-377.
- [8] Mishra A K, Gragg M, Stoneman M R, et al. Quaternary structures of opsin in live cells revealed by FRET spectrometry[J]. The Biochemical Journal, 2016, 473(21): 3819-3836.
- [9] Zhu J, Deng C, Huang G L, et al. Quantitative fluorescence correction incorporating Förster resonance energy transfer and its use for measurement of hybridization efficiency on microarrays [J]. Analytical Chemistry, 2009, 81(4): 1426-1432.
- [10] Xie F B, Zhu J, Deng C, et al. General and reliable

quantitative measurement of fluorescence resonance energy transfer using three fluorescence channels[J]. The Analyst, 2012, 137(4): 1013-1019.

- [11] Raicu V. Efficiency of resonance energy transfer in homo-oligomeric complexes of proteins [J]. Journal of Biological Physics, 2007, 33(2): 109-127.
- [12] Butz E S, Ben-Johny M, Shen M, et al. Quantifying macromolecular interactions in living cells using FRET two-hybrid assays [J]. Nature Protocols, 2016, 11(12): 2470-2498.
- [13] Takemoto K, Nagai T, Miyawaki A, et al. Spatiotemporal activation of caspase revealed by indicator that is insensitive to environmental effects [J]. The Journal of Cell Biology, 2003, 160(2): 235-243.
- [14] Clegg R M, Feddersen B A, Gratton E, et al. Timeresolved imaging fluorescence microscopy [J]. Proceedings of SPIE, 1992, 1640: 448-460.
- [15] Aye-Han N N, Ni Q, Zhang J. Fluorescent biosensors for real-time tracking of post-translational modification dynamics [J]. Current Opinion in Chemical Biology, 2009, 13(4): 392-397.
- [16] Erickson M G, Alseikhan B A, Peterson B Z, et al. Preassociation of calmodulin with voltage-gated Ca²⁺ channels revealed by FRET in single living cells[J]. Neuron, 2001, 31(6): 973-985.
- [17] Mustafa S, Hannagan J, Rigby P, et al. Quantitative Förster resonance energy transfer efficiency measurements using simultaneous spectral unmixing of excitation and emission spectra [J]. Journal of Biomedical Optics, 2013, 18(2): 026024.
- [18] Lin F R, Du M Y, Yang F F, et al. Improved spectrometer-microscope for quantitative fluorescence resonance energy transfer measurement based on simultaneous spectral unmixing of excitation and emission spectra [J]. Journal of Biomedical Optics, 2018, 23(1): 016006.
- [19] Lin F R, Zhang C, Du M Y, et al. Superior robustness of ExEm-spFRET to IIem-spFRET method in live-cell FRET measurement [J]. Journal of Microscopy, 2018, 272(2): 145-150.
- [20] Yin A, Chen T S. Quantitative fluorescence resonance energy transfer measurement based on spectral unmixing [J]. Chinese Journal of Lasers, 2020, 47(2): 0207009.
 尹傲,陈同生.基于光谱分离的定量荧光共振能量转移检测[J].中国激光, 2020, 47(2): 0207009.
- [21] Zal T, Gascoigne N R J. Photobleaching-corrected FRET efficiency imaging of live cells[J]. Biophysical Journal, 2004, 86(6): 3923-3939.
- [22] Chen H, Puhl H L, Koushik S V, et al. Measurement of FRET efficiency and ratio of donor

to acceptor concentration in living cells [J]. Biophysical Journal, 2006, 91(5): L39-L41.

- [23] Zhang J, Zhang L L, Chai L Y, et al. Reliable measurement of the FRET sensitized-quenching transition factor for FRET quantification in living cells[J]. Micron, 2016, 88: 7-15.
- [24] Yin A, Sun H, Chen H, et al. Measuring calibration factors by imaging a dish of cells expressing different tandem constructs plasmids[J]. Cytometry. Part A, 2021, 99(6): 632-640.
- [25] Du M Y, Yang F F, Mai Z H, et al. FRET twohybrid assay by linearly fitting FRET efficiency to concentration ratio between acceptor and donor [J]. Applied Physics Letters, 2018, 112(15): 153702.
- [26] Day R N, Davidson M W. Fluorescent proteins for FRET microscopy: monitoring protein interactions in living cells[J]. BioEssays, 2012, 34(5): 341-350.
- [27] Ai H W, Henderson J N, Remington S J, et al. Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging [J]. The Biochemical Journal, 2006, 400(3): 531-540.
- [28] Thaler C, Koushik S V, Blank P S, et al.

Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer [J]. Biophysical Journal, 2005, 89(4): 2736-2749.

- [29] Zhang C, Lin F R, Du M Y, et al. Simultaneous measurement of quantum yield ratio and absorption ratio between acceptor and donor by linearly unmixing excitation-emission spectra [J]. Journal of Microscopy, 2018, 270(3): 335-342.
- [30] Zhang C, Liu Y, Sun H, et al. Automated E-FRET microscope for dynamical live-cell FRET imaging[J]. Journal of Microscopy, 2019, 274(1): 45-54.
- [31] Su W H, Du M Y, Lin F R, et al. Quantitative FRET measurement based on spectral unmixing of donor, acceptor and spontaneous excitation-emission spectra[J]. Journal of Biophotonics, 2019, 12(4): e201800314.
- [32] Wlodarczyk J, Woehler A, Kobe F, et al. Analysis of FRET signals in the presence of free donors and acceptors[J]. Biophysical Journal, 2008, 94(3): 986-1000.
- [33] Levy S, Wilms C D, Brumer E, et al. SpRET: highly sensitive and reliable spectral measurement of absolute FRET efficiency [J]. Microscopy and Microanalysis, 2011, 17(2): 176-190.

Robustness Evaluation of Quantitative Fluorescence Resonance Energy Transfer Imaging Methods in Live Cells

Yin Ao^{1,2}, Zhai Shixian^{1,2}, Sun Han^{1,2}, Liu Zhi^{1,2}, Zhuang Zhengfei^{1,2,3**},

Chen Tongsheng^{1, 2, 3*}

 1 Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics,

 $South\ China\ Normal\ University\ ,\ Guangzhou\ ,\ Guangdong\ 510631\ ,\ China\ ;$

 2 Guangdong Key Laboratory of Laser Life Science , College of Biophotonics , South China Normal University ,

 $Guangzhou\,,\ Guangdong\ 510631\,,\ China\,;$

³ SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan, Guangdong 511517, China

Abstract

Objective Acceptor-sensitized 3-cube fluorescence resonance energy transfer (FRET) imaging (also termed E-FRET imaging) is a popular FRET quantification method in living cells that uses fluorescence intensity. We recently developed a measurement of calibration factors (termed as mTA-G method) that eliminates the influence of the emission transmission characteristics of the instrument used on quantitative E-FRET measurement, significantly increasing the success rate and accuracy of quantitative E-FRET measurement in living cells. Because of its inherent ability to resolve the excitation-emission spectra of donor and acceptor, as well as donor-acceptor sensitization, spectral unmixing of simultaneous excitation and emission spectra (mExEm-spFRET) has been used for quantitative FRET measurement without the need for additional reference for correcting the excitation crosstalk. We evaluated the two methods' robustness by implementing them on a self-assembled quantitative FRET measurement system with cells expressing different constructs.

Methods The research methods of this paper are mainly divided into four sections: Cell culture and plasmids transfection, predetermining spectral crosstalk and spectral fingerprints, measuring calibration factors and system parameters, superior robustness of mExEm-spFRET to E-FRET method. First, MCF-7 cells were cultured in 6-well plates. For transfection, cells were separately transfected with four different FRET plasmids using transfection reagent. Then, living MCF-7 cells separately expressing YFP (Y) and CFP (C) were used to predetermine the spectral crosstalk coefficients (a, b, c and d) and spectral fingerprints ($S_{\rm D}$, $S_{\rm A}$, and $S_{\rm S}$) were shown in Fig.1 and Fig.2. Next, calibration factors (G and γ) were measured using cells expressing C4Y, C10Y, C40Y, and C80Y (Fig.3). The cells expressing C4Y were used to measure system parameters ($f_{\rm sc}$ and $r_{\rm K}$) (Fig.4). Finally, to evaluate the robustness of mExEm-spFRET and E-FRET methods, we performed quantitative mExEm-spFRET and E-FRET methods, we performed quantitative mExEm-spFRET and E-FRET methods, of plasmids under different signal-to-noise ratios ($R_{\rm sN}$) on different days (Fig. 5 and Table 3).

Results and Discussion The E and $R_{\rm c}$ values of different FRET plasmid in the cells in Fig. 3 measured by mExEm-spFRET and E-FRET method were shown in Table 1, respectively. For cells 1 and 2, the E and R_c values measured by both methods were consistent with the reported E values and the expected $R_{\rm c}$ values. Still, the E values measured by E-FRET were generally larger than those calculated by the mExEm-spFRET method. These results indicate that both methods are applicable for live-cell FRET measurement. Table 2 shows different constructs' statistical E and $R_{\rm c}$ values in living MCF-7 cells under different $R_{\rm SN}$. For the cells under $R_{\rm SN}>3$, the two methods obtained consistent FRET efficiency (E) values, but E-FRET obtained smaller donor/acceptor concentration ratio $(R_{\rm c})$ values than the expected for individual constructs; for the cells under $R_{\rm SN} \leq 3$, the two methods obtained consistent R_c values, but the deviation of individual plasmid E values obtained by E-FRET was slightly larger. These results further demonstrate E-FRET has slightly less robustness than the mExEm-spFRET method, especially for the cells under a low $R_{\rm sy}$. We repeated the above measurements on our system on March 10th and obtained consistent results with FRET results measured on December 12 by mExEm-spFRET (Table 3). But the R_c values of C80Y obtained by E-FRET were inconsistent with expected values. These results show the superior robustness of mExEmspFRET to E-FRET method especially for the cells with low E ($E \le 0.14$). Because the fluorescence expression of YFP is very unstable and easily disturbed by the background (BG) signal, particularly for the cells with low $R_{\rm SN}$, resulting in the inaccurate results measured by the E-FRET method. Because of the excellent robustness of mExEmspFRET, just as described above, the mExEm-spFRET method still obtained accurate results for the C80Y construct in the cells with a low $R_{\rm SN}$.

Conclusions In this report, we evaluated the robustness of both E-FRET and mExEm-spFRET methods by implementing E-FRET and mExEm-spFRET measurements, respectively, with two excitation wavelengths using the same cells expressing different constructs under different $R_{\rm SN}$. For the cells under $R_{\rm SN} > 3$, the two methods obtained consistent FRET efficiency (*E*) values, but E-FRET obtained smaller $R_{\rm c}$ values than the expected for individual constructs; for the cells under $R_{\rm SN} < 3$, the two methods obtained consistent $R_{\rm c}$ values obtained by E-FRET was slightly larger. E-FRET and mExEm-spFRET methods are very applicable for live-cell FRET measurement and the superior robustness of mExEm-spFRET to E-FRET method, especially for the cells with low $R_{\rm SN}$ and E ($R_{\rm SN} < 3$, E < 0.14).

Key words spectroscopy; fluorescence resonance energy transfer (FRET); quantitative FRET measurement; living cell; spectral unmixing; robustness

OCIS codes 300.1030; 300.2530; 300.6300; 300.2140